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bstract

Predicting transient behavior of lead-acid batteries during charge and discharge processes is an important factor in many applications including
ybrid electric vehicles (HEVs). The conventional mathematical models, which are used to predict the battery dynamics, are either inaccurate or
ime-consuming. In this study, an improved and efficient mathematical model for simulation of flooded lead-acid batteries based on Computational
luid Dynamics (CFD) and Equivalent Circuit Model (ECM) has been introduced which inherits the accuracy of CFD model and the physical

nderstanding of ECM. This approach makes the numerical procedure very efficient and easy to implement. Moreover, because of simplification
f boundary conditions (BC’s), it is very fast which makes it quite suitable for real-time simulations. The present approach is verified by previous
FD models and experimental data.
2007 Elsevier B.V. All rights reserved.
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. Introduction

The lead-acid batteries have been widely used as secondary
ources of energy for almost 150 years. High specific energy,
igh-rate discharge capability, low cost in both manufacturing
nd recycling and finally high energy density are the most impor-
ant characteristics of this kind of batteries resulting into their
rowing usage. On the other hand, current characteristics of
ead-acid batteries are not optimum and should be optimized. In
rder to improve the performance of lead-acid batteries trial-and-
rror methods, usually based on experimental tests, have been
sed for many years. Experimental tests are very valuable but
ery costly and time-consuming; also many design parameters
uch as acid gradient distribution cannot be obtained experi-

entally. Although these tests can lead to better performance,

hey never result into the best choice. Because of these defi-
iencies, various mathematical models have been developed to
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redict the dynamic behavior of lead-acid batteries. These dif-
erent mathematical models have been proposed for different
urposes. Among them ECM and CFD methods are of great
mportance.

In ECM method, each phenomenon in battery is mod-
led by an electrical component such as resistance, capacitor,
tc. Then the whole battery is modeled as a complete elec-
rical circuit whose solution simulates the battery dynamic
ehavior. This type of modeling is fast enough for real-time
imulation and accurate for some parameters. Traditionally,
his type of modeling is normally used to obtain dynamic
time-dependent) parameters of battery and spatial distributed
arameters such as acid concentration gradient across the cell
idth is not considered, however, one can use the model to
btain the spatial parameters as well. Moreover, to obtain the
attery parameters, one should perform some experimental tests
1–3].

In CFD model, on the other hand, the governing equations of

he battery dynamic are solved using advanced numerical tech-
iques. Since these governing equations are solved with respect
o time and space, all the physical time and space dependent
roperties such as acid concentration and potential distribution
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Nomenclature

a coefficient
A specific electroactive area (cm2 cm−3)
C acid concentration (mol cm−3)
D diffusion coefficient (cm2 S−1)
F Faraday constant, 96,487 C mol−1

i current through liquid or solid (A cm−2)
i0 exchange current density
I applied current (A cm−2)
j transfer current density (A cm−2)
j̄ mean transfer current density (A cm−2)
J transfer current (A cm−2)
k conductivity of liquid (S cm−1)
L Total width of a cell (cm)
Q theoretical capacity (C cm−3)
R resistance (S−1)
SoC state of charge
t time (s)
T temperature (K)
�V potential difference (V)
x spatial dimension (cm)

Greek letters
αa, αc anodic and cathodic transfer coefficient
ε porosity
σ conductivity of solid matrix (S cm−1)
φ electric potential (V)

Subscripts and superscripts
D pertinent to diffusion
eff effective, corrected for tortuosity
ex exponent in the effective property
l liquid phase
m volume number
max maximum
ref reference
s solid phase
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a short time which makes this model very suitable for design
0 initial value

cross the cell can be obtained. Thus, such a modeling is able
o give a very good understanding of battery parameters and
etailed characteristic of battery dynamic, which makes it very
uitable for design purposes.

Many efforts have been done in order to develop the appropri-
te set of governing equations for lead-acid batteries. Presence
f the porous media and electrochemical reactions and being
multiphase system, lead to complexity of batteries nature.
eumann and Tiedmann [4] first developed a comprehensive
orous electrode theory and applied it to simulate the dis-
harge behavior of a lead-acid cell. Bernardi et al. [5] proposed
two-dimensional model to simulate the effects of the cur-
ent collector tabs. Most recently, Wang and Gu [6] developed
he mathematical governing equations of batteries which are
btained from the conservation laws. In their model, the effects

a
a
a

r Sources 176 (2008) 373–380

f free convection have been considered and it was shown
hat fluid dynamics have a very important role in the batter-
es dynamic behavior. These equations can be used in all kinds
f batteries (VRLA or vented lead-acid batteries) with little
odification. Gu et al. [7] solved the governing equation of a

ead-acid battery using a multiregion formulation. They used a
et of boundary condition equations in the boundaries of each
egion (positive electrode/electrolyte, electrolyte/separator and
o on) in order to interrelate the different regions of battery.
he whole system was solved by a three-point finite difference
cheme which results in a block tri-diagonal system of equa-
ions. But in order to maintain the second order of accuracy
f the code, off diagonal elements appeared in their coeffi-
ient matrix. Hence, they used a modified bounded routine
o solve the system. Gu et al. [8], on the other hand, intro-
uced a set of governing equations which were valid in all cell
egions. Therefore, it does not require any special system of
quations for each region and their boundaries. They solved
his system of equations by means of finite volume method
FVM). Esfahanian and Torabi [9] solved this system of equa-
ions using Keller-Box method. Their method has a second order
ccuracy in space as well as time. Since this method has a
wo-point algorithm and both functions and their derivatives are
olved as unknowns, it is a very suitable method for solving the
attery governing equations and does not require any special
outine.

CFD models are very accurate but they suffer from being
ime-consuming. In CFD methods, a large nonlinear system of
quations is solved iteratively. When the system is also stiff (like
he system of equations in battery dynamic) its convergence
s very slow and thus, it is very computationally expensive.

ang and Gu [6] reported that the solution of discharge and
harge cycle using a one-dimension model required 10 s. While
sfahanian and Torabi [9] reported that 30 s is required to
imulate the same cycle. It also worth noting that these simula-
ions were based on flooded lead-acid batteries. Therefore, no
ide reaction such as hydrogen evolution or oxygen recycling
as considered. Applying these phenomena to the simulations
ill increase the computational time in a very large amount.
oreover, extending the model to two or three dimension will

ncrease the execution time considerably. These results show
hat in general, the CFD models may not be fast enough for
eal-time simulations, especially when the models are two and
hree-dimensional. Therefore, they cannot be used where the
ast solution is required, i.e. in optimization or in real-time
urposes like monitoring or real-time simulation of hybrid
lectric vehicle (HEV). Any method which can accelerate the
FD codes will be of great importance and interest.

In this study, a new innovative computational algorithm is
ntroduced which is a combination of ECM and CFD methods.
his model inherits the accuracy of CFD method (because the
ame governing equations are solved) and is fast like an ECM
ethod. By this model, one can have an accurate result within
s well as real-time purposes. The results of the present model
re compared with previous CFD models, which showed the
ccuracy of code.
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. Mathematical model

A typical lead-acid cell is shown schematically in Fig. 1
hich consists of the following regions: a lead-grid collector

t x = 0 which is at the center of the positive electrode; a positive
bO2 electrode; an electrolyte reservoir; a porous separator; a
egative Pb electrode; and finally a lead-grid collector at x = l
hich is at the center of the negative electrode. The positive and
egative electrodes consist of porous solid matrices whose pores
re flooded by a binary sulfuric acid, H2SO4. The present model
s assumed to be one-dimensional perpendicular to the faces of
he electrodes.

During charge and discharge, the following electrochemical
eactions occur:

The positive electrode (PbO2/PbSO4):

PbO2(s)+HSO−
4 +3H+ + 2e−Discharge

�
Charge

PbSO4(s)+2H2O (1)

The negative electrode (Pb/PbSO4):

Pb(s) + HSO−
4

Discharge
�

Charge
PbSO4(s) + H+ + 2e− (2)

In the present model, as an approximation, the effects of side
eactions are neglected. Therefore, the model can be applied
nly on traditional vented lead-acid batteries. Side reactions,
owever, can be easily modeled with the same procedure.

.1. Governing equations

As it was mentioned, the general governing equations of bat-
ery dynamic have been developed by Wang and Gu [6] which
nclude all chemical and electrochemical reactions as well as the

ow motion. In the present study, these equations are simplified
or flooded lead-acid batteries.

Conservation of charge in solid and liquid phases is repre-
ented according to the following relations.

Fig. 1. Schematic illustration of a lead-acid cell.
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Conservation of charge in solid:

∇(σeff∇φs) − Aj = 0 (3)

Conservation of charge in liquid:

∇(keff∇φl) + ∇(keff
D ∇(ln c)) + Aj = 0 (4)

here j is the exchange current density (from solid phase to the
lectrolyte phase) and can be expressed in the general Butler-
olmer form:

= i0

(
c

cref

)γ {
exp

(
αaF

RT
η

)
− exp

(
−αcF

RT
η

)}
(5)

n this equation, the overpotential η is defined as
= φs − φl − �UPbO2 for positive electrode and η = φs − φl

or negetive electrode, and �UPbO2 is the open circuit potential.
Another conservation equation is obtained using a mass bal-

nce for ionic species in electrolyte phase, which is well known
s the conservation of species equation. This equation in the case
f one-dimensional modeling is simplified as

∂(εc)

∂t
= ∇(Deff∇c) + a2

Aj

2F
(6)

In the presence of electrochemical reactions, the porosity of
he electrodes changes due to the volumetric change of the con-
erted material. To account the porosity change of the electrodes,
onservation of mass can be used. This balance results in

∂ε

∂t
− a1

Aj

2F
= 0 (7)

The state of charge parameter (SoC) is defined as the ratio
f instantaneous electrode capacity to the maximum theoretical
apacity of electrode and thus can be evaluated by the following
ate equation:

∂(SoC)

∂t
= ± Aj

Qmax
(8)

here, the positive and negative signs correspond to PbO2 and
b electrodes, respectively.

In Eqs. (3)–(8), the specific electroactive area A is a strong
unction of SoC and differs during charge and discharge because
f different active materials involved. These areas can be related
o the SoC via the following empirical relations [8]:

Discharge:

A = AmaxSoCζ (9)

Charge:

A = Amax(1 − SoCζ) (10)

Details of the other governing equations and their coefficients

hich are functions of ε and SoC can be found in [7,8] and will
ot be repeated here. In this study, the main focus will be on
onservation of charge and species equations (Eqs. (3), (4) and
6)).
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.2. Initial and boundary conditions

In order to solve the system of equations, initial and bound-
ry conditions for primary variables are necessary. The initial
ondition for acid concentration is c = c0. The appropriate BC’s
t x = 0 and x = l for c and φl are ∂c/∂x = ∂φl/∂x = 0; the BC’s
or potential in solid at x = 0 and x = l are −σeff(∂φl/∂x) = I for a
rescribed current density or φs = V at x = l for a given voltage. It
hould be notice that at x = 0 potential in solid phase is assumed
o be zero as a reference value (φs = 0).

The transport equations for potentials in solid and liquid are
lliptic partial differential equations (PDE). Mathematically, an
lliptic PDE with Neumann type of BC’s in all the boundaries of
omain has a unique solution if: (a) it satisfies the compatibility
quation and (b) at least one value is known inside the domain.
ompatibility equation in the battery dynamic is interpreted as
onservation of charge. It means that the amount of current that
nters the cell at one electrode should leave the cell at the other
lectrode. To have a unique solution, one should specify a value
or potential in one point; for example φs = 0 at the center of the
ositive electrode. Then φl at the center of positive electrode can
e obtained using compatibility equation [10]. All the potentials
re calculated related to this reference potential. Without this
eference point, a unique solution cannot be obtained.

. Numerical difficulties

As it can be seen, the governing equations of battery are
ighly nonlinear and contain nonlinear source terms. Moreover,
he system of equations is highly stiff and all equations are highly
oupled together and elliptic in nature (require iterative meth-
ds to solve). But the most difficulties arise from Neumann-type
C’s. Because of presence of this type of BC’s, usual CFD

echniques are very time-consuming and should be solved iter-
tively, especially for φl. As it mentioned both BC’s of φl are
eumann type therefore, to obtain the solution, the value of φl

hould be assigned at one point and then with this guessed value
he governing equations are solved. When the governing equa-
ions are solved, from the compatibility equation the value of
l should be modified. On the other hand, in the negative elec-
rode, also there are two Neumann-type BC’s for φs and similar
o φl, the solution to its governing equation should be obtained
teratively using the compatibility equation. This procedure is
ighly time-consuming.

r
c

i

Fig. 2. Current distribution in
r Sources 176 (2008) 373–380

In this study, the conservation of charges in solid and liquid
hase are used along with the compatibility equation through the
hole domain to eliminate the iteration. Therefore, the solution
ill be faster.

. Numerical scheme

The most time-consuming part of computation can be elim-
nated if the distribution of φs and φl are obtained by another

ean. In the present study, a two-step scheme is introduced
o overcome the problem. In the first step, the conservation of
harge equations are considered (Eqs. (3) and (4)). Mathemat-
cally, these two couple equations have elliptic nature whose
olutions require a lot of computational time. To reduce the
omputational time, these equations are combined by Kirch-
off’s current and voltage laws (KCL and KVL) and are solved
ith an ECM based on finite volume method.
Using this new form of discretization, the distribution of φs

nd φl can be obtained much faster than the previous studies
hich were based on pure finite difference or finite volume meth-
ds. Once the distribution of φs and φl are obtained (at each time
evel), in the second step, the equation of conservation of species
6) is solved using Keller-Box method [9]. Since this equation
s parabolic therefore, the solution can be found very quickly by

arching in time. These two steps are considered in more detail
n the next sections.

.1. Step 1

In general, the applied current should be conserved through-
ut the cell. This current enters the cell from an external circuit
nd enters the solid phase. As it can be seen schematically in
ig. 2, the current enters the electrolyte through surface reac-

ions whose rate is determined by kinetics of the reactions. At
he end of the solid phase, all the current enters the electrolyte
hase through which is carried by ions to the other electrode.
n the other electrode surface, this current enters the solid phase

gain in a reverse manner.
As it described above, at each point inside the domain, two

urrents can be defined: current through solid phase (is) and cur-

ent through liquid phase (il). Hence, the compatibility equation
an be written at each point through the cell as

s + il = Iapplied (11)

solid and liquid phases.
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Furthermore, conservation of charge implies:

is + ∇il = ∇Iapplied = 0 (12)

From Eqs. (3) and (4) conservation of charge equations in
olid and liquid phases in one-dimension model can be rewritten
s below

Conservation of charge in solid phase:

∂

∂x

(
−σeff ∂φs

∂x

)
= −Aj (13)

Conservation of charge in liquid phase:

∂

∂x

(
−keff ∂φl

∂x
− keff

D

c

∂c

∂x

)
= +Aj (14)

The currents through the solid and liquid phase are defined
s

s = −σeff ∂φs

∂x
(15)

l = −keff ∂φl

∂x
− keff

D

c

∂c

∂x
(16)

sing these definitions in Eqs. (13) and (14) yield:

∂(is)

∂x
= −Aj (17)

∂(il)

∂x
= Aj (18)

In order to obtain the potentials in solid and electrolyte and
xchange current between these two phases, each electrode is
ivided into a number of numerical cell or control volume
Fig. 2) over which all the parameters are assumed to be uni-
orm and Eqs. (17) and (18) are integrated on each volume as
ollow:

Current in solid phase at mth volume:
is(m+1/2) − is(m−1/2) = −Aj̄mΔxm = −Jm (19)

Current in liquid phase at mth volume:

il(m+1/2) − il(m−1/2) = Aj̄mΔxm = Jm (20)

i

Fig. 3. Schematic illustration of (a) computatio
r Sources 176 (2008) 373–380 377

In Eqs. (19) and (20) j̄(m) is the mean exchange current
ntered through the mth control volume from the solid phase
o liquid phase or vice versa.

The electro-neutrality indicates that the sum of the current
hat enters a control volume must leave it, because no current
s generated inside the volume. This fact can be denoted by
umming up the two sides of Eqs. (19) and (20). Therefore, at
ach node the conservation of charge is satisfied automatically.

s(m+1/2) + il(m+1/2) = is(m−1/2) + il(m−1/2) = Iapplied (21)

It is observed that the exchange current Jm connects the
urrents through the solid and liquid phases; therefore each
ontrol volume can be modeled by an electric circuit which is
hown in Fig. 3(a). As it can be seen, at the junction of solid
urface of the electrode and electrolyte, a voltage difference
xists which is known as overpotential. The surface overpo-
ential is the driven potential which causes the current enters
rom the electrode to the electrolyte or vice versa. The amount
f this current can be determined using Butler-Volmer equation
Eq. (5)).

From Eqs. (19) and (20), it is observed that these equations
epresent KCL in the electric circuit shown in Fig. 3(b) which
xpress that the summation of all currents that enter a node
hould be zero. Also from KVL:

(φs(m+1) − φs(m)) + (φl(m+1) − φs(m+1))

+(φl(m) − φl(m+1)) + (φs(m) − φl(m)) = 0 (22)

Using this auxiliary equation eliminates the iteration on BC’s
equired by pure CFD methods to satisfy the compatibility equa-
ion.

The currents in the solid and electrolyte can be obtained from
mproved Ohm’s law. Eqs. (15) and (16) can be discretized to
btain the currents at the surfaces of mth control volume with
econd order of accuracy. For example at right surface of mth
ontrol volume:
s(m+1/2) = −σeff ∂φs

∂x
|(m+1/2)

= −σeff
(m+1/2)

φs(m+1) − φs(m)

�x(m+1/2)
(23)

nal volume and (b) volume circuit model.
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Fig. 4. Equivalent Circuit M

nd

l(m+1/2) = −keff ∂φl

∂x
|(m+1/2) − keff

D

c

∂c

∂x
|(m+1/2)

= −k(m+1/2)
φl(m+1) − φl(m)

Δx(m+1/2)
− keff

D

c

∂c

∂x
|(m+1/2) (24)

With the same order of accuracy1, ohmic resistances
s(m+1/2) = (Rs(m) + Rs(m+1))/2 and Rl(m+1/2) = (Rl(m) + Rl(m+1))/2

n which Rs(m) = �x(m)/σ
eff
(m) and Rl(m) = �x(m)/σ

eff
(m) are

efined. Hence, Eqs. (23) and (24) can be rewritten as follow:

s(m+1/2) = −φs(m) − φs(m+1)

Rs(m+1/2)
(25)

l(m+1/2) = −φl(m) − φl(m+1)

Rl(m+1/2)
− kD

1

c

∂c

∂x
|(m+1/2) (26)

Because the conservation of charge and species equations are
olved uncoupled, the last term in Eq. (26) which determines the
ontribution of concentration gradient on il is considered as a
ource term and is known from the previous time step.

From Fig. 3, it is obvious that instead of the potential in nodes,
he potential differences can be used to obtain the currents. Thus,
hree new variables are introduced:

�Vs(m) = φs(m+1) − φs(m) �Vl(m) = φl(m+1) − φl(m)

VJ(m) = φs(m) − φl(m) (27)

Using these new variables Eq. (22) can be rewritten as

Vs(m) − �VJ(m+1) − �Vl(m) + �VJ(m) = 0 (28)

Finally, at each volume, there are three unknowns (Eq. (23))
nd three equations (i.e. Eqs. (19), (20) and (28)) which should
e solved to obtain the solution. In order to have a good accu-
acy, the whole battery is divided into a number of (namely n)
olumes in series which will result a system of 3n unknowns and
n equations (some of them neglected in the separator region).
his model is illustrated in Fig. 4. Because Jm is a nonlinear
unction of �VJ(m) according to the Eq. (5), the system of equa-
ions should be linearized and solved iteratively. As indicated
rom Fig. 4 four Neumann-type BC’s are reduced to only one

1 The averaging operator is second order.

a

d
d
B
c

l of the whole battery cell.

irichlet-type BC which is at the current collector of positive
lectrode (is(1) = Iapplied). Since the current at the other bound-
ry is satisfied automatically (is(Imax) = Iapplied), no boundary
ondition is required at the end of the equivalent circuit. After
Vs(m), �Vl(m) and �VJ(m) have been obtained, φs(m) and φl(m)

an be computed using Eq. (27). It should be noted that at x = 0
he value of φs(1) = 0 is used again as a reference.

.2. Step 2

Once the distributions of φs and φl are found, one can obtain
he acid concentration gradient (Eq. (6)) by solving numeri-
ally using Keller-Box method. The Keller-Box method and its
pplication to battery modeling is explained in [9] and is not
entioned here again. After obtaining the battery parameters in

his time step, the whole procedure is repeated again to advance
o the next time step.

. Results

The system of governing equations has been solved using this
ew combination of CFD and ECM method. To verify the above-
entioned procedure, the discharge, rest and charge problems

f a lead-acid cell have been simulated. These samples have
een studied by Gu et al. [7] and reproduced by Gu et al. [8] an
sfahanian and Torabi [9]. All the necessary parameters are the
ame as the ones used by Gu et al. [7].

Fig. 5 shows the simulated voltage of the battery cell ver-
us time during discharge. The results of present study match
ery well with the results of the other researchers [7–9]. Charge
ehavior of the same cell is presented in Fig. 6 and is compared
ith the other studies [7,8]. In Fig. 7 the variations of acid con-

entration in time levels 0, 60 and 105 s are shown. The figure
ndicates that the results of present simulation agree with the
revious studies [7–9]. As it can be seen, when the cell reaches
ut-off voltage (i.e. t = 105 s), the acid is totally consumed in pos-
tive electrode. But in negative electrode, the acid is not totally
onsumed which means the negative electrode is over designed
nd can be optimized [11].

Fig. 8 shows the variation of charge across the electrodes at

ifferent time steps. The results show that during the battery
ischarge, the amount of charge in both electrodes decreases.
ut at the end of discharge, the electrodes still have a lot of
harge which means these electrodes are not fully utilized.
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Fig. 5. Voltage of the cell during discharge.

Fig. 6. Voltage of the cell during charge.

Fig. 7. Distribution of acid concentration across the cell width during discharge.
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Fig. 8. Distribution of charge across the cell width during discharge.

In Fig. 9 the distribution of porosity throughout the cell in
ime levels 0, 60 and 105 s are presented. As it can be observed,
ecause the converted materials occupy greater volume rather
han initial ones, the electrodes holes gradually are filled during
ischarge hence, the electrodes porosity decreases.

In Fig. 10, the overpotential distributions of electrodes are
resented. As it can be seen, during discharge there is a nega-
ive overpotential distribution throughout positive electrode and

positive distribution in negative electrode. Because the total
nternal resistance of the cell increases during discharge process,
he magnitudes of these overpotentials increase to overcome this
esistance.

Conservation of charge during charge and discharge are pre-
ented in Fig. 11. As it can be seen, through the width of one

lectrode, current enters the electrolyte. At the end of solid phase
f that electrode, all the current has entered the electrolyte phase.
n the other electrode surface, this current enters the solid phase

Fig. 9. Distribution of porosity across the cell width during discharge.
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Table 1
Comparison of the needed CPU time between the new approach and the classical one

Total number of nodes N Classical approach (s) New approach (s) Speed up factor

50 21.1
100 39.9
150 59.7

Fig. 10. Distribution of overpotential η across the electrodes during discharge.
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Fig. 11. Distribution of current through the cell.
gain in a reverse manner. As it can be seen from the figure
t each point through the cell width the summation of is and
l is constant and equals to applied current density. The same
ehavior is observed during discharge.

[

[

0.39 54.1
0.75 53.2
1.12 53.3

Table 1 shows the comparison between computational time
f current method with previous CFD simulations. As it can be
een, the present model requires much less computational time
n comparison with conventional CFD methods. The speed up
actor of the comparison shows that this method accelerates the
olution about 50 times. This comparison illustrates the signifi-
ance of the present model in battery modeling both in real-time
imulation and optimization algorithms.

. Conclusions

In this paper an improved mathematical model for lead-acid
atteries based on CFD and ECM has been introduced. This
odel inherits accuracy of CFD model and physical under-

tanding of ECM. Moreover, it is very fast which makes it quite
uitable for real-time simulations. The present model not only
redicts battery dynamical characteristics but also is capable to
olve distributed parameters such as acid concentration distri-
ution versus time. The present approach is verified by previous
FD models and experimental data. The results show that this
odel has a good accuracy and the execution time is quite fast

nough for real-time purposes and optimization processes.
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